Red de Cabauw curve

Door Bart Verheggen en Hans Custers

Bijna een jaar geleden verscheen er op dit blog een stuk over het dreigende einde van de Keeling curve: de metingen van CO2 in de atmosfeer op Mauna Loa, Hawaii. De Keeling curve werd uiteindelijk (voor de komende vijf jaar) gered door een donatie van een half miljoen dollar van Wendy en (ex-Google-baas) Eric Schmidt.

In het NRC van vandaag bericht Paul Luttikhuis dat de Nederlandse versie van de Keeling curve nu tot een einde dreigt te komen (zie ook zijn NRC blog). De regering wil de financiering van CO2-metingen door ECN, bij het meetpunt van het KNMI in Cabauw, stoppen. Omdat ze niet strikt noodzakelijk zouden zijn.

Daar valt wel wat op af te dingen. Het is belangrijk voor het energie- en klimaatbeleid om goed de vinger aan de pols te houden wat de emissies precies zijn en hoe die zich ontwikkelen. Daarvoor zijn metingen onontbeerlijk. Met name metingen op hoge masten zijn heel nuttig, omdat die representatief zijn voor een groter oppervlak dan grondmetingen (die bijvoorbeeld verstoord kunnen worden door een voorbijrijdende auto).

Deze metingen kunnen bijvoorbeeld als input dienen voor atmosferische simulatiemodellen, en door die in “inverse modus” te draaien kun je dan de emissies uitrekenen. Dit heet inverse modelering, omdat normaalgesproken diezelfde modellen worden gebruikt om vanuit de aangenomen emissies en de meteorologische windvelden de concentratie als functie van tijd en plaats te berekenen. Door input en output om te draaien kun je de aangenomen emissies verifiëren op basis van de observaties. Emissieverificatie dus. Daar heb je natuurlijk wel goede, representatieve metingen voor nodig over langere tijd.

Op basis van deze methode, namelijk het koppelen van toren-metingen aan inverse modelering, is bijvoorbeeld gebleken dat de emissies van methaan en lachgas in een aantal landen toch wel wat hoger waren dan de officiële “emission inventories”. De toren metingen worden ook veelvuldig gebruikt voor “ground truthing” van satelliet gegevens. Een meetmast zoals Cabauw is onderdeel van onze kennis-infrastructuur. Het is niet voor niets gekenmerkt als een zogenaamde “super-site” voor meteorologische observaties.

Cabauw 2

Als zodanig hebben de metingen ook een grote wetenschappelijke waarde. Het is niet voor niets dat bijvoorbeeld Duitsland en Frankrijk bezig zijn met het plaatsen van nieuwe meetpunten. Het lijkt mij typerend voor de ontwikkeling in Nederland van de afgelopen, pakweg, 30 jaar. In de jaren ’80 van de vorige eeuw was Nederland wereldwijd een van de koplopers in het aanpakken van milieuproblemen en daarmee een belangrijke exporteur van kennis en technologie. Ondertussen dreigen we achterop te raken. En dat terwijl wij, met ons deels beneden de zeespiegel gelegen land, nog wel zo kwetsbaar zijn voor de gevolgen van het mondiale milieuprobleem van deze tijd: klimaatverandering.

Stoppen met de CO2 metingen in Cabauw gaat niet alleen ten koste van gegevens die belangrijk zijn voor de wetenschap. Nederland zou er ook een signaal mee uitzenden, het signaal dat klimaatverandering ons niet zo veel kan schelen. En dat we het best vinden om in de toekomst voor de meetgegevens afhankelijk te zijn van de grote Europese broers. Ik vraag me af of we ons met dat signaal niet in onze eigen vingers snijden.

In de Amerikaanse cultuur is het niet ongebruikelijk om initiatieven te starten om particulier geld op te halen voor dergelijke wetenschappelijke projecten. In de Nederlandse situatie is dat veel minder het geval. Ik heb er dan ook niet zo veel vertrouwen in dat zoiets hier zou lukken. Het zou veel beter zijn als de politiek zijn verantwoordelijkheid neemt. Blijft nemen.

Meten is weten
Figuur 1 hieronder bevat bijvoorbeeld de CO2 en CH4 (methaan) metingen bij de meettoren van Cabauw en figuur 2 een poster van een wetenschappelijk onderzoek waarbij gebruik is gemaakt van Cabauw meetdata.

Figuur 1. CO2 (a) en CH4 (b) metingen bij Cabauw. Grijze kruizen zijn alle meetwaarden, de rode punten zogenaamde ‘getrimde’ meetdata en de zwarte lijn is een fit met een harmonische functie. Bron: Vermeulen et al 2011.
Figuur 2. Wetenschappelijke poster van Vermeulen et al met inverse modeling resultaten versus Cabauw metingen (AGU2010).

Verwarring over de opwarming van de oceanen

Door Bob Brand en Jos Hagelaars

Door menselijke activiteiten is de aarde aan het opwarmen en circa 93% van die warmte wordt door de oceanen opgenomen. De verandering in de warmte-inhoud van de oceanen is derhalve een heel belangrijke graadmeter voor de klimaatverandering. Het is voor de klimaatwetenschap dan ook een belangrijk onderwerp van onderzoek.

Recent zijn er twee artikelen uitgekomen over de opwarming van de oceanen in het tijdschrift Nature: Durack et al over het onderschatten van de opwarming van 1970 t/m 2004 tot 700 meter diepte (vooral op het zuidelijk halfrond) en Llovel et al over de opwarming van de gehele oceaan van 2005 t/m 2013. Volgens sommige commentatoren lijken deze onderzoeken elkaar tegen spreken en er is wat verwarring over de verschillende oceaandiepten.

Durack: onderschatten van de opwarming

Durack e.a. hebben de diverse datasets betreffende de warmte-inhoud (OHC = ocean heat content) van de oceanen vergeleken met de theoretische verwachting volgens modellen en met de zeespiegelstijging zoals gemeten met satellieten. Daar een deel van de zeespiegelstijging wordt veroorzaakt door de thermische uitzetting van het oceaanwater, is er een grote correlatie tussen de zeespiegelstijging en de warmte-inhoud. Op grond van deze analyses concluderen Durack e.a. dat de warmte-opname van het zuidelijk halfrond voor de periode 1970 t/m 2004 te laag is ingeschat. Zij wijten dit aan de beperkte dekkingsgraad van de diverse warmte-inhoud meetinstrumenten op het zuidelijk halfrond over die periode. Vanaf circa 2004 is deze dekkingsgraad verbeterd door het inzetten van de Argo sondes.

Durack en zijn mede-auteurs hebben doorgerekend wat deze onderschatting van de opwarming betekent voor de diverse warmte-inhoud datasets, zie figuur 1. Voor de mondiale NOAA data (Levitus 2012, de donkerblauwe balk) zou de onderschatting mondiaal gemiddeld oplopen tot maar liefst 58%.

Figuur 1: De waargenomen en gesimuleerde verandering van de warmte-inhoud voor 1970-2004. Figuur 5 uit Durack et al.

Lees verder

Jazeker hebben wij mensen voor opwarming gezorgd!

“It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.”

Meestal gaan we op dit blog in veel stukken diep op de wetenschap in, wat voor nieuwkomers in het klimaatonderzoek lastig te volgen kan zijn. Dit keer probeer ik de basis te bespreken van de achtergrond van de bovenstaande zin. Het is een stuk tekst uit de samenvatting voor beleidsmakers van het IPCC AR5-rapport van 2013: de mens is de belangrijkste veroorzaker van de opwarming van de aarde sinds 1950. Niet iedereen gelooft deze uitspraak, maar de klimaatwetenschap is er toch erg zeker van.

De temperatuurverandering

Nadat Galileo, Fahrenheit en Celsius zich in het verre verleden met het meten van de temperatuur en de thermometer hadden bemoeid, hebben mensen ook de temperatuur van hun omgeving gemeten en vastgelegd. In Nederland startte dat bijvoorbeeld al aan het einde van de 17e eeuw. Naarmate de tijd vorderde, werden deze meetmethoden uiteraard steeds beter en werd er op steeds meer plaatsen in de wereld gemeten. Deze temperatuurmetingen vormen de basis van de bepaling van de mondiale temperatuurverandering van de afgelopen paar honderd jaar door een aantal onderzoeksgroepen. De bekendste groepen die zich daar mee bezighouden zijn NASA GISS en NOAA-NCDC uit de VS, het Engelse Met Office Hadley Centre/CRU of het Japan Meteorological Agency, je komt hun gegevens vaak tegen onder de namen GISTEMP, NCDC, HadCRUT en JMA. De Amerikaanse groepen rapporteren mondiale temperatuurdata die starten in 1880, de Japanse data starten in 1891 en de data van de Engelse groep starten zelfs in 1850.

De grafiek in onderstaande figuur komt uit het IPCC AR5-rapport en geeft de temperatuurontwikkeling op aarde weer vanaf 1850, gebruik makend van de resultaten van de drie hierboven genoemde onderzoeksgroepen. In de grafiek is de gemiddelde temperatuur op aarde over de periode 1961 – 1990 op 0 gesteld en dus geven alle lijnen in de grafiek de afwijking van de temperatuur weer t.o.v. die referentie periode (de temperatuur anomalie). Eén ding valt direct op als je naar de grafiek kijkt: het is warmer geworden op aarde sinds het einde van de 19e eeuw en dan vooral na 1970. Na 1970 is ook elk decennium warmer geweest dan het voorgaande. Volgens het IPCC is het op aarde sinds 1880 circa 0,85 °C warmer geworden en na 1950 circa 0,65 °C.

Figuur 1: De temperatuurverandering op aarde sinds 1850 waarbij drie temperatuurdatasets zijn gebruikt (HadCRUT – zwart, GISTEMP – blauw, NCDC – oranje). Gebaseerd op figuur SPM.1a uit het IPCC AR5 rapport 2013.

Lees verder

Tegenpolen: waarom de Noordpool zo snel opwarmt en de Zuidpool zo traag

aa

Temperatuurtrends over 1979 – 2005 volgens NASA GISTEMP. Bron: Marshall et al 2014

Het is een bekend fenomeen voor iedereen die het klimaatnieuws volgt: terwijl het oppervlak van het zeeijs in het Noordpoolgebied (tussen alle jaren van “herstel” door, die de zelfverklaarde sceptici zien) in ras tempo afneemt, groeit het juist rond Antarctica. Dit jaar werd voor de derde keer op rij een nieuw maximum-record bereikt. Zelfs die regelmaat lijkt in contrast te staan met de grote schommelingen aan de Noordpool, maar waarschijnlijk is dat toeval. Hoe dan ook, de tegenstelling in de ontwikkeling van het zeeijs is één van de vele voorbeelden die laten zien hoe verschillend de Noord- en Zuidpool op de opwarming van het klimaatsysteem reageren. Een voorbeeld dat overigens vrij makkelijk in perspectief is te plaatsen; dat deed blogger David Appell bijvoorbeeld enkele maanden geleden aan de hand van recente metingen en onderzoeksresultaten.

aa

Trends in zee- en landijs. Bron: Quark Soup – David Appell

Onlangs gepubliceerde meetgegevens van ESA’s Cryosat-2 laten nog eens zien dat de ijsmassa op Antarctica afneemt, en dat die afname zelfs versnelt. GOCE, een andere ESA-satelliet, ziet die afname ook, door kleine verschuivingen in de zwaartekracht. Op de Noordpool is de massa-afname veel kleiner – alleen op Groenland is het waarneembaar – simpelweg omdat er veel minder landijs is.

Daarmee zijn we meteen bij het grote verschil tussen de twee polen aangekomen: de Noordpool is oceaan, voor een deel omgeven door land en Antarctica is een continent, helemaal omgeven door de oceaan. Uiteindelijk zijn vrijwel alle verschillen tussen de twee polen hier direct of indirect op terug te voeren.

Lees verder

Video-interview over klimaat-enquete artikel

De Nederlandse blogger Collin Maessen heeft mij via skype geinterviewed over onze recente paper “Scientists’ views about attribution of global warming“:

Collin schreef ook een blogpost erover die de moeite waard is om te lezen, waarin hij wat context geeft aan de hand van andere enquêtes en literatuur-analyses.

Het interview begint met de algemene bevindingen over de mate van consensus. Daarna komt de vergelijking met eerdere studies aan bod, en hoe de berichtgeving in de media skeptische meningen uitvergroot t.o.v. de mate waarin die onder wetenschappers te vinden zijn. Ook geeft hij mij de kans om over mijn favoriete onderdeel te praten, namelijk hoe de afkoeling door aërosolen de opwarming door broeikasgassen deels maskeert en hoe dit de attributie-conclusie in IPCC AR4 vatbaar maakt voor misinterpretatie. Deze aspecten zijn ook besproken in mijn blogpost van vorige maand.

Klimaatmodellen en de Tijdmachine van Meehl

Klimaatmodellen en de ‘hiatus’

Klimaatmodellen. Gooi dit woord in een groep van zogenaamde klimaatsceptici en je krijgt ongetwijfeld een flinke dosis hoon over je heen. De oorzaak van dit interessante fenomeen is gelegen in het feit dat de prognoses van het IPCC voor diverse toekomstscenario’s onder meer zijn gebaseerd op berekeningen met, jazeker: Klimaatmodellen. Die prognoses laten zien dat het op aarde flink warmer zal worden als we op deze wijze doorgaan met het uitstorten van broeikasgassen in de atmosfeer. Uiteraard vindt men dit in klimaatsceptische kringen geheel onjuist, want ieder kind kan zien dat de klimaatmodellen totaal onbruikbaar zijn: de beroemde ‘hiatus’ – de langzamere stijging van de oppervlaktetemperatuur na circa 2000 t.o.v. de 30 jaar daarvoor – is niet voorspeld door de klimaatmodellen. Zie figuur 1.

Figuur 1. 82 CMIP5 model runs op basis van het RCP8.5 scenario (licht blauwe lijnen) met hun gemiddelde (de zwarte lijn). De rode meetpunten zijn HadCRUT4 data en de blauwe de Cowtan & Way data (van de methode ‘Hybrid-UAH’), het jaar 2014 betreft de gegevens t/m juli. De dikke rode lijn en blauwe lijn zijn verkregen uit de HadCRUT4 en Cowtan & Way data via een Loess smooth over 30 jaar.

Lees verder

Het weer is warmer dan het klimaat (in het vroege Antropoceen)

Enkele dagen geleden zag ik een serie van vier tweets voorbijkomen van Kees van der Leun.

Het leek me wel aardig om uit te zoeken wanneer de jaargemiddelde temperatuur voor het laatst lager was dan het gemiddelde over de voorafgaande 30 jaar. En dus toog ik spoorslags naar het onvolprezen Woord for Trees, dat naast die geweldige tool om met enkele muisklikken grafieken te maken, ook de mogelijkheid biedt om gegevens in hapklare brokken te downloaden. Dat moest ik wel even doen, want de grafiek die ik nodig had hoort niet bij de standaard opties van Wood for Trees.

Na het downloaden was het klusje zo geklaard: ik had een grafiek met het antwoord. Waarna ik me begon af te vragen wat ik ermee aan kon vangen. Liep ik niet het risico met hoon te worden overladen als ik mijn grafiekje openbaar zou maken? Immers, volgens de regels der kunst in de statistiek hoort een voortschrijdend gemiddelde uitgelijnd te worden op het midden van een periode en niet op het eind, zoals ik voor mijn 30 jaars gemiddelde had gedaan. Dat was immers nodig om het antwoord op de vraag te krijgen. Medeblogger Jos stelde me gerust. Ik zou niet de enige zijn die zich niet aan de statistische mores houdt: in de wereld van de aandelenhandel blijkt het heel gebruikelijk te zijn om op deze manier een voortschrijdend gemiddelde weer te geven als hulpmiddel bij het beleggen. Als de actuele waarde hoger ligt dan het voortschrijdend gemiddelde, ziet men daar zelfs een aanwijzing in voor verdere groei. Zover wil ik niet gaan. Voor de verwachting dat de temperatuur verder zal stijgen, bestaan bewijzen die veel overtuigender zijn.

Bovendien: het klimaat is gedefinieerd als het gemiddelde weer over een periode van (minstens) 30 jaar. Omdat we het weer van de komende 15 jaar niet kennen, denk ik dat het ook wel redelijk is om het klimaat te definiëren als het gemiddelde weer van de afgelopen 30 jaar. Mijn grafiek vergelijkt dus het actuele wereldweer (in blauw) met het actuele wereldklimaat (in rood), volgens NASA’s GISTEMP.

gisstemp30j

Het wereldweer (gemiddelde over 12 maanden, in blauw) en wereldklimaat (gemiddelde over 30 jaar, in rood) volgens NASA’s GISTEMP data

De laatste keer dat de jaargemiddelde temperatuur lager was dan het 30 jaars gemiddelde was: maart 1977. Dat is meer dan 30 jaar geleden. We kunnen dus concluderen dat weer dat warmer is dan het klimaat een kenmerk van het huidige wereldklimaat is.

Tot slot nog iets heel anders: zoals via Twitter het idee voor een grafiekje aanwaaide, verscheen via Youtube een interview met Jan Paul van Soest op mijn scherm. Het is de moeite van het bekijken meer dan waard.