Categorie archief: Klimaatgevoeligheid

Nieuws over de klimaatgevoeligheid, maar geen spectaculair nieuws

Er was de afgelopen dagen wat drukte in de social media over een nieuw artikel in Science Advances over de klimaatgevoeligheid. Aanleiding voor die drukte was waarschijnlijk vooral een bericht in De Volkskrant, waarin de soep wat heter werd opgediend dat hij wordt gegeten. Want waar De Volkskrant suggereert dat het onderzoek een heel nieuw inzicht geeft, is het in werkelijkheid vooral een bevestiging van wat veel klimaatwetenschappers al dachten.

Het artikel “Slow climate mode reconciles historical and model-based estimates of climate sensitivity” is geschreven door twee onderzoekers van Harvard: Christian Proistosescu (inmiddels werkzaam aan de Universiteit van Washington) en Peter Huybers. Nic Lewis vindt in De Volkskrant dat het onderzoek de verschillende resultaten die de diverse methoden om de klimaatgevoeligheid te schatten opleveren “onder het tapijt” veegt. Een ronduit absurd verwijt, omdat het onderzoek juist helemaal gewijd is aan die verschillen. Er wordt absoluut niet geheimzinnig gedaan over de verschillen, Men zoekt hier juist naar een verklaring voor de verschillen tussen de zogenaamde observationele methode en schattingen van de klimaatgevoeligheid volgens klimaatmodellen. Zoals dat hoort in de wetenschap.

We hebben er al vaker over geschreven op ons blog: schattingen van de evenwichtsklimaatgevoeligheid (of ECS: Equilibrium Climate Sensitivity) volgens de zogenaamde observationele methode vallen meestal wat lager uit dan schattingen op basis van klimaatmodellen of paleoklimatologische reconstructies. In het artikel waarin de observationele methode 15 jaar geleden voor het eerst werd beschreven, Gregory et al., werd deze methode al een ondergrens-benadering genoemd. Dat deze schattingen vaak aan de lage kant zijn is dus geen verrassing. Mensen als Lewis menen desondanks dat deze methode superieur is, vermoedelijk juist omdat de lage uitkomst ze zo goed bevalt.

Het mooie van observationele schattingen van de klimaatgevoeligheid is de eenvoud van de methode. Maar dat is tegelijkertijd de zwakte. Proistosescu en Huybers constateren wat bijvoorbeeld Marvel et al. en Richardson et al. eerder ook al constateerden: de sterk vereenvoudigde observationele methode, die volledig gebaseerd is op mondiaal gemiddelde gegeven, mist onderdelen van de complexe realiteit die van invloed kunnen zijn op de werkelijke klimaatgevoeligheid. De focus op het mondiale gemiddelde gaat bijvoorbeeld helemaal voorbij aan de grote lokale verschillen die er in de echte wereld zijn. Modellen kijken wel naar die lokale verschillen. Een belangrijk verschil is dat tussen land en oceaan. Niet alleen warmt land sneller op dan de oceaan, er kunnen ook verschillen zijn in de terugkoppelingen die de opwarming versterken of verzwakken. En dat is precies wat Proistosescu en Huybers vinden, via een uitgebreide analyse van CMIP5 modelresultaten: de versterkende terugkoppelingen zijn boven de oceaan sterker dan boven land. Omdat de opwarming van de oceanen achterloopt op het mondiaal gemiddelde, geldt dat ook voor die versterkende terugkoppelingen. We hebben dus nog relatief veel opwarming tegoed van wat Proistosescu en Huybers de “slow mode” noemen. Lees verder

Advertenties

De grenzen van de klimaatgevoeligheid

eft2152-fig-0001

We schrijven hier veel en vaak over klimaatgevoeligheid. Met reden: aan de hand van klimaatgevoeligheid kan goed inzichtelijk gemaakt worden hoeveel invloed menselijke CO2-emissies op het klimaat hebben, of kunnen hebben. Zowel binnen de wetenschap als in de communicatie over de wetenschap is het bijzonder prettig om het klimaateffect van broeikasgassen in één getal te kunnen vangen. Maar er zitten wel wat adders onder het gras.

Klimaatgevoeligheid betekent: de stijging van de mondiaal gemiddelde temperatuur die optreedt als gevolg van een verdubbeling van de CO2-concentratie. Eigenlijk is klimaatgevoeligheid dus het meeste eenvoudige klimaatmodel dat er bestaat: het klimaateffect van CO2 gevangen in één getal. Die eenvoud is de kracht van het model, maar tegelijkertijd ook de zwakte. Het klimaatsysteem is namelijk niet zo simpel. Het is daarom goed om te beseffen dat schattingen van klimaatgevoeligheid een vereenvoudigde benadering zijn en dat klimaatgevoeligheid allerminst een fysische constante is.

Omdat klimaatgevoeligheid zo’n veelbesproken onderwerp is, kan het geen kwaad om de basisbeginselen en de voetangels en klemmen van dit begrip nog eens op een rijtje te zetten. Een afgelopen najaar in Earth’s Future verschenen artikel – Prospects for narrowing bounds on Earth’s equilibrium climate sensitivity van Stevens et al. – is aanleiding en, grotendeels, leidraad voor dit stuk. Aan het eind ga ik nog even in op een interessante suggestie die Stevens et al. doen voor toekomstig klimaatonderzoek. Lees verder

Paniek om paleoklimatologie

Er was vorige week nogal wat drukte in de social media om een nieuw paleoklimatologisch onderzoek. Of beter: om een artikel van The Independent over dat onderzoek. De kop boven dat artikel is niet bepaald hoopvol: “Climate change may be escalating so fast it could be ‘game over’, scientists warn”. Sommige twitteraars meenden, als ik het me goed herinner, dat het einde van de wereld nu al onafwendbaar is. Sommige anderen leken te denken dat de mensheid nog voor het eind van deze eeuw verdwenen zou zijn als we niets zouden doen om broeikasgasemissies terug te brengen.

Het artikel van The Independent is een stuk genuanceerder dan de kop doet vermoeden. Gelukkig maar. Niet alleen omdat de aarde hoe dan ook zijn baantjes om de zon zal blijven trekken, ongeacht wat wij aanrichten met het klimaat, of omdat de menselijke soort wel eens moeilijker uitroeibaar zou kunnen zijn dan sommigen denken. Maar ook, of beter: vooral, omdat het bijna nooit voorkomt dat een onderzoek alle bestaande kennis in een keer tenietdoet. Wie zijn conclusies baseert op één enkel onderzoek lijdt aan het single study syndrome. Een kwaal die, zo blijkt, niet alleen voorkomt bij pseudosceptici.

Het gaat dus om een paleoklimatologisch onderzoek dat verscheen in Science Advances (het filiaal van Science dat niet achter een betaalmuur zit): “Nonlinear climate sensitivity and its implications for future greenhouse warming” van Friedrich et al.. Het onderzoek reconstrueert de mondiaal gemiddelde temperatuur over bijna 800.000 jaar: een periode die meerdere cycli van glacialen en interglacialen omvat. Op basis van die reconstructie wordt geschat hoe gevoelig het klimaat is voor veranderingen in de stralingsbalans. Die klimaatgevoeligheid geeft een indicatie van de te verwachten opwarming door een versterkt broeikaseffect. Friedrich et al. lijkt in dit opzicht op het onderzoek van Snyder dat in september verscheen. De reconstructies komen goed overeen, zoals de afbeelding hieronder laat zien.

Temperatuurreconstructie volgens Friedrich et al. 2016 (in zwart) en Snyder 2016 (in groen). (Bron: Jos Hagelaars)

Temperatuurreconstructie volgens Friedrich et al. 2016 (in zwart) en Snyder 2016 (in groen). (Bron: Jos Hagelaars)

Lees verder

De temperatuur op aarde tijdens de afgelopen 2 miljoen jaar

In september is er een artikel in Nature verschenen van de hand van Carolyn Snyder, getiteld “Evolution of global temperature over the past two million years”. In het artikel beschrijft zij een reconstructie van de mondiale temperatuur op aarde van de afgelopen 2 miljoen jaar, Snyder is daarmee de eerste die dat presteert. De grafiek hierboven vergelijkt haar temperatuurreconstructie met de gemeten opwarming vanaf 1880 en met de temperatuurprojecties tot het jaar 3000 volgens twee IPCC scenario’s, RCP6.0 en RCP8.5. Het RCP8.5 scenario is een soort business-as-usual scenario, oftewel: wat zal er gebeuren als we niets doen om onze CO2-emissies terug te dringen. Het RCP6.0 scenario is gebaseerd op een beperkte emissiereductie. Volgens de vergelijking van deze scenario’s met de temperatuurreconstructie van Snyder zullen we aan het einde van deze eeuw de temperatuurrange van het Pleistoceen (het tijdvak van circa 2,6 miljoen jaar – 12 duizend jaar geleden) zo ongeveer achter ons laten als we onze CO2-emissies niet intomen. Voor het jaar 3000 is dat zeer waarschijnlijk het geval, de temperatuur stijgt natuurlijk nog verder als de CO2-concentratie dan nog steeds toeneemt en dat is in beide projecties het geval.

Lees verder

De “nieuwe inzichten” van Simon Rozendaal in Elsevier: een fact-check

Afgelopen week verscheen in Elsevier een stuk [link naar de pdf van dit stuk op last van Elsevier verwijderd, we mogen alleen linken naar de versie achter de betaalmuur] van Simon Rozendaal – die zich afgelopen najaar tijdens een paneldiscussie in Delft net iets te nadrukkelijk uitriep tot “objectief wetenschapsjournalist”– onder de kop: “Opwarming valt toch mee.” Het verhaal is grotendeels gebaseerd op uitlatingen van Nic Lewis en Marcel Crok en bevat dan ook vooral argumenten van deze twee, waarvan er vele al herhaaldelijk zijn genuanceerd of weerlegd. Ook op dit blog. Daarover verderop in dit stuk meer.

Wellicht interessanter dan het voor de zoveelste keer herhalen van bekende argumenten, is de wat subtielere manoeuvre die Rozendaal maakt wanneer het even echt over nieuwe wetenschappelijke inzichten gaat. Hij lijkt wederhoor te plegen bij wetenschappers van het KNMI, maar weet de informatie die hem daar wordt aangereikt met de hulp van zijn andere twee geïnterviewden toch weer in de richting van de vooraf gewenste conclusie te draaien. Door van de uitkomst van wetenschappelijke analyse iets heel anders te maken.

De argumenten van de mensen van het KNMI liggen in de lijn van het recente onderzoek van Richardson et al, waar ik eind juni over schreef: verschillen tussen klimaatmodellen en waarnemingen horen bij de normale wetenschappelijke onzekerheid, ze worden steeds beter begrepen en vormen dus geen reden om modelanalyses simpelweg terzijde te schuiven. Rozendaal gaat daarna door over Richardson et al.. Deze onderzoekers constateren, om het nog eens kort samen te vatten, dat de mondiaal gemiddelde temperatuur uit modelberekeningen niet helemaal vergelijkbaar is met de mondiaal gemiddelde temperatuur uit observaties. Het heeft te maken met de beperkte dekkingsgraad van metingen in bepaalde delen van de wereld, die in modellen niet bestaat, en met het feit dat modelresultaten de temperatuur geven van de atmosfeer vlak boven het aardoppervlak, terwijl in de observaties de temperatuur van de atmosfeer boven land en zeeijs wordt gecombineerd met die van het water aan het oceaanoppervlak. Ze laten vervolgens zien dat modelresultaten veel dichter bij de observaties liggen als er rekening wordt gehouden met deze verschillen. Ze presenteren deze bevinding voor wat het is: een interessante uitkomst van een interessante analyse. Wetenschap dus.

Laten we nu eens kijken wat in Elsevier staat:

De Amerikaanse klimaatonderzoeker Mark Richardson schreef eind juni met drie collega’s in Nature Climate Change eveneens dat thermometers niet de ‘echte’ temperatuur weergeven. Op zijn blog Climate Lab Book schreef de Britse onderzoeker Ed Hawkins vorige week dat de ‘echte’ opwarming 24 procent groter is dan het wereldwijde meetnetwerk HadCRUT4 aangeeft, door alle klimaatdeskundigen als toonaangevend beschouwd. In werkelijkheid zou de gemiddelde temperatuur op aarde 0,2 graden hoger zijn dan de thermometers aangeven.

Dat is koren op de molen van klimaatsceptici. Er blijkt een kloof te bestaan tussen de computers en de thermometers, en wat doen de bouwers en beheerders van de modellen? Ze zeggen dat de thermometers de verkeerde temperatuur aangeven en corrigeren met behulp van de computermodellen. Dat is misschien geen gesjoemel, maar wel gegoochel.

Wat in het artikel van Richardson nog een interessante wetenschappelijke verklaring van het verschil tussen observaties en modellen was, is hier iets heel anders geworden: een waardeoordeel. Zo’n zelfverzonnen waardeoordeel is veel makkelijker aan te vallen dan een droge wetenschappelijke conclusie. Voor de zekerheid – misschien is de manoeuvre voor sommige lezers te subtiel- worden dan nog de kwalificaties “gesjoemel” en “gegoochel” toegevoegd. Wie nog eens kijkt naar wat de onderzoekers echt hebben geschreven, zowel in hun artikel als in de blogstukken erover, zal zien dat ze juist heel zorgvuldig elk waardeoordeel vermijden. Omdat het, wetenschappelijk gezien, niet interessant is. En omdat wetenschappers allang weten dat noch observaties, noch modellen de “echte” temperatuur weergeven. Elk wetenschappelijk model heeft zijn beperkingen en elke wetenschappelijke waarneming heeft zijn onzekerheden. Het idee dat we een van de twee zouden moeten kiezen om zoiets als “de waarheid” te weten is niet bepaald wetenschappelijk. De suggestie dat Richardson et al. zoiets doen is zelfs anti-wetenschappelijk te noemen, omdat het volledig haaks staat op waar het in hun onderzoek, en in de wetenschap in het algemeen, om draait: begrijpen en verklaren. Daarmee komt de wetenschap vooruit. De verschillen tussen wetenschappelijke modellen en waarnemingen, of de onderlinge verschillen tussen diverse modellen en analysemethodes, markeren in elke wetenschappelijke discipline het terrein waar er vooruitgang te boeken is. Richardson en zijn collega’s hebben zich op dat terrein begeven en een aannemelijke verklaring gevonden voor een flink deel van het verschil tussen klimaatmodellen en observaties. Wie in die verklaring een opportunistische claim leest, of een waardeoordeel, diskwalificeert de verklaring niet, of de onderzoekers die die verklaring vonden, maar alleen zichzelf. Het heeft er alle schijn van dat Rozendaal (al dan niet op gezag van Crok en Lewis) zijn eigen onvermogen om wetenschappelijke resultaten los te zien van zijn persoonlijke opvattingen en voorkeuren projecteert op de onderzoekers, die zich juist uiterst zorgvuldig beperken tot nuchtere wetenschappelijke constateringen. Lees verder

Schattingen van klimaatgevoeligheid bij elkaar gebracht

Vertaling/bewerking van een blogpost van Ed Hawkins, aangevuld met informatie uit een toelichting van Kevin Cowtan, op de site van de University of York

Klimaatgevoeligheid geeft aan hoe het klimaatsysteem reageert op een verandering in zijn energiebalans, ofwel een stralingsforcering. Klimaatgevoeligheid kan via verschillende methodes bepaald worden, waarbij schattingen gebaseerd op historische instrumentele metingen van de temperatuur meestal lager uitvallen dan wat volgt uit geavanceerde modellen die het klimaat simuleren, of uit andere methodes. Voor sommigen was dit aanleiding om uiterst voorbarig te concluderen dat de modellen te gevoelig zouden zijn.

Een nieuw onderzoek – Richardson et al., verschenen in Nature Climate Change; code en data zijn beschikbaar via de University of York – verklaart de verschillen grotendeels. De uitkomsten van de twee methodes zijn niet helemaal vergelijkbaar omdat ze op een verschillende benadering van de mondiaal gemiddelde temperatuur zijn gebaseerd.

Het onderzoek heeft ook implicaties voor het begrip van de opwarming die volgt uit instrumentele metingen. De daadwerkelijke opwarming zou bijna 25% hoger zijn dan blijkt uit de HadCRUT4 dataset.

Historische meteorologische data bevatten metingen van de temperatuur van de atmosfeer boven land en boven zeeijs en metingen van de temperatuur van het zeeoppervlak. De gegevens zijn vanzelfsprekend alleen beschikbaar voor plekken op aarde waar ze daadwerkelijk gemeten zijn, door weerstations of door schepen. De verandering van de gemiddelde mondiale temperatuur (zoals HadCRUT4) wordt bepaald door deze data te combineren.

De (verandering van de) mondiaal gemiddelde temperatuur die uit modelsimulaties wordt bepaald is meestal de temperatuur van de atmosfeer op twee meter hoogte, gemiddeld over het gehele aardoppervlak (deze temperatuur noemt men in het artikel “tas”). Dit is de meest eenvoudige manier om dit te berekenen. Heeft dit verschil invloed?

Eerder onderzoek van Cowtan et al. liet zien dat dit inderdaad het geval is. De subtiele verschillen in de manier waarop de mondiale temperatuur wordt geschat kan van significante invloed zijn op de conclusies die worden verbonden aan een vergelijking van modellen en observaties.

Terugreizen in de tijd om alsnog metingen te doen op plekken van de aarde waarvoor geen instrumentele data beschikbaar zijn is onmogelijk. Om toch tot een eerlijke “apples to apples” vergelijking te komen, moet er daarom anders gekeken worden naar modelresultaten. De onderzoekers hebben dit gedaan door, bij wijze van spreken, virtuele HadCRUT4 data te berekenen uit modelresultaten. Ze hebben de volgende twee factoren in beschouwing genomen:

  • de beperkte dekking van het aardoppervlak door meetstations (bijvoorbeeld in het Noordpoolgebied); de modeldata die gebasseerd zijn op dezelfde dekkingsgraad als de metingen noemt men “masked”;
  • het gebruik van de gemodelleerde temperatuur van het zeeoppervlak in plaats van die van de atmosfeer boven de oceaan, consistent met de metingen; deze modeldata noemt men “blended”.

Figuur 1 geeft de resultaten van deze analyse.

De rode lijn in figuur 1a geeft de gangbare atmosferische temperatuur uit modelsimulaties weer, gemiddeld over het hele aardoppervlak. De blauwe lijn laat het resultaat zien van een eerlijke vergelijking van modellen en waarnemingen. Het verschil tussen waarnemingen en modellen verdwijnt dan grotendeels. Het verschil tussen atmosferische temperatuur en temperatuur van het zeeoppervlak en de onvolledige dekkingsgraad van het aardoppervlak dragen hier ruwweg in gelijke mate aan bij.

Het effect is significant. Volgens de CMIP5 simulaties zou meer dan 0,2°C opwarming niet zichtbaar zijn in de instrumentele data, door de onvolledige dekkingsgraad en het gebruik van de temperatuur van het zeeoppervlak (figuur 1b). Dit is verklaarbaar omdat het Noordpoolgebied, met een (historisch) lage dekkingsgraad, veel sneller opwarmt dan het mondiaal gemiddelde en omdat de atmosfeer sneller opwarmt dan de oceaan, door het verschil in warmtecapaciteit.

richardson_fig1

Figuur 1. Mediane temperatuur volgens CMIP5 simulaties, vergeleken met HadCRUT4 observaties.

Lees verder

Nieuw onderzoek maakt lage klimaatgevoeligheid minder waarschijnlijk

climatesensitivity.001

Klimaatgevoeligheid, het lijkt een eenvoudig begrip: de temperatuurverandering als gevolg van een verdubbeling van de CO2-concentratie. De realiteit is een stuk ingewikkelder. Het overzicht van recente publicaties op de internetpagina van de workshop over klimaatgevoeligheid van afgelopen voorjaar geeft een aardig beeld van die ingewikkeldheid. Het grote aantal feedbacks dat op zeer uiteenlopende tijdschalen een rol speelt maakt niet alleen het nauwkeurig bepalen van de klimaatgevoeligheid lastig; ook bij de interpretatie liggen er wat voetangels en klemmen op de loer. Om de risico’s van klimaatverandering voor mens en natuur te bepalen, is bijvoorbeeld het tempo van de verandering, en dus de klimaatgevoeligheid op termijn van ruwweg een eeuw, minstens zo belangrijk als de uiteindelijke opwarming na duizenden jaren. Aan de andere kant: om resultaten van paleoklimatologisch onderzoek te vertalen naar het huidige klimaat, is ook inzicht nodig in langetermijneffecten.

De klimaatwetenschap heeft dan ook verschillende begrippen voor de klimaatgevoeligheid op verschillende tijdschalen. De twee meest gebruikte zijn:

  • Equilibrium Climate Sensitivity (ECS): de temperatuurstijging als het klimaatsysteem na een verdubbeling van de CO2-concentratie weer in evenwicht is. Maar er zit een adder onder het gras. Het begrip ECS komt uit het Charney-rapport uit 1979 – met een beetje goede wil is dat rapport te beschouwen als het begin van de wetenschappelijke consensus (pdf) over de menselijke invloed van het klimaat – en het beperkt zich dan ook tot de feedbacks die in dat rapport werden meegenomen. Feedbacks op geologische tijdschaal, ten gevolge van bijvoorbeeld het smelten van grote ijskappen of veranderingen in de biosfeer, zijn er niet bij ingegrepen. ECS wordt ook wel Charney sensitivity genoemd.
  • Transient Climate Respons (TCR): de opwarming na 70 jaar, wanneer de CO2-concentratie elk jaar met 1% toeneemt. Waarom 70 jaar? Omdat de CO2-concentratie bij een jaarlijkse toename van 1% na 70 jaar is verdubbeld. TCR geeft een indicatie van de klimaatgevoeligheid die voor onze samenleving het meest relevant was: de respons van het klimaatsysteem die we binnen één of enkele generaties kunnen verwachten.

Klimaatgevoeligheid op geologische tijdschaal, met inbegrip van alle trage feedbacks, heet Earth System Sensitivity (ESS). ECS en ESS van elkaar onderscheiden kan lastig zijn. En dan is er ook nog de Effective Climate Sensitivity, een schatting van de ECS op basis van een vereenvoudigd model, die door veel wetenschappers als een schatting van de ondergrens wordt gezien. Ik durf mijn hand er niet voor in het vuur te steken dat deze termen altijd helemaal consequent worden gebruikt. Lees verder