Categorie archief: Oceanen

Versnelt de zeespiegelstijging? – Deel 2

Door de alsmaar stijgende broeikasgasconcentraties zal het deze eeuw warmer worden op onze aarde. De grote ijskappen zullen hier op reageren (zoals nu al het enigszins het geval is) en meer massa verliezen, wat bijdraagt aan de zeespiegelstijging. De satellietmetingen van het zeeniveau sinds 1993 laten zien dat vooral de bijdrage van het smelten van de ijskap op Groenland aan de zeespiegelstijging is toegenomen en over de periode vanaf 2004 circa 25% bedraagt. De nieuwste gegevens wijzen op een toename in de snelheid van de zeespiegelstijging.

De komst van de satellieten heeft de meetmogelijkheden aan de aarde aanzienlijk uitgebreid en dat geldt ook voor het zeeniveau. Sinds eind 1992 zijn er diverse satellieten gelanceerd die door middel van radar de veranderingen in het zeeniveau in kaart kunnen brengen. Een groot voordeel boven getijdenmetingen is dat via de satellieten ook het zeeniveau van de grote oceaanvlakten gemeten kan worden. Simpel wordt het echter nooit, ook bij deze meettechniek zijn diverse correcties nodig zoals onder andere voor de hoeveelheid waterdamp in de atmosfeer, de plaatselijke luchtdruk en tevens voor het opveren van het land. De lineaire trend in de zeespiegelstijging op basis van de satellietdata vanaf 1993, zoals die nu wordt gerapporteerd, bedraagt circa 3,2 tot 3,4 mm/jaar. Ondanks de geconstateerde toename van het massaverlies van de grote ijskappen was er geen versnelling in de zeespiegelstijging zichtbaar. Eerder was het tegengestelde het geval, de trend over het eerste decennium van de satellietmetingen was hoger dan over het tweede decennium. Zie de grafiek in figuur 1.

Figuur 1: De zeespiegelstijging op basis van satellietdata zoals gerapporteerd door de University of Colorado. Bron: Fasullo et al. 2016.

Lees verder

Advertenties

Versnelt de zeespiegelstijging? – Deel 1

Door de alsmaar stijgende broeikasgasconcentraties zal het deze eeuw warmer worden op onze aarde. De grote ijskappen zullen hier op reageren (zoals nu al het enigszins het geval is) en meer massa verliezen, wat bijdraagt aan de zeespiegelstijging. De huidige snelheid van de zeespiegelstijging is met circa 3 mm per jaar een stuk hoger dan het gemiddelde over de gehele 20e eeuw (< 2 mm per jaar). De algemene verwachting is dat het zeeniveau deze eeuw sneller zal gaan stijgen dan nu het geval is.

De huidige zeespiegelstijging bedraagt circa 3 mm/jaar. Als je dat simpelweg extrapoleert naar de toekomst, worden we aan het einde van deze eeuw geconfronteerd met een extra zeespiegelstijging van zo’n 30 cm. Simpelweg extrapoleren geeft natuurlijk niet de beste prognose. De zeespiegelstijging wordt namelijk mede bepaald door hoeveel warmer het deze eeuw zal worden (wat leidt tot thermische uitzetting van het water) én hoe de landgletsjers en de grote ijskappen op deze opwarming zullen reageren. In de klimaatwetenschap wordt dat uiteraard allemaal meegewogen en men verwacht, mede afhankelijk van de toekomstige emissies, dat de zeespiegel sneller zal gaan stijgen de komende decennia tot eeuwen. Het IPCC rapporteerde in 2013 (tabel 13.5) dat de zeespiegelstijging in 2100 ergens tussen een halve meter tot een meter zou bedragen (bij ongewijzigd beleid – RCP8.5 scenario). De kennis over de invloed van opwarming op de ijskappen neemt snel toe en dat heeft er toe geleid dat de laatste schattingen van vooral de bovengrenzen van de mogelijke zeespiegelstijging in 2100 een stuk hoger liggen, zie het tabelletje hieronder (afkomstig van RealClimate). De meest recente artikelen rapporteren bovengrenzen van zelfs meer dan 2 meter door een mogelijke toename van de bijdrage van de grote ijskap van Antarctica (zie bijv. De Conto 2016, Le Bars 2017). De onzekerheid in de hoogte van de toekomstige zeespiegelstijging is groot, dus de wetenschappers hebben nog werk genoeg. Een vervelende bijkomstigheid: de onzekerheid lijkt vooral aan de kant van mogelijke tegenvallers te zitten.


Lees verder

De ingenieursblik van Dick Thoenes berust niet op feiten

Zo af en toe wordt een pseudosceptisch verhaal door allerlei mensen opgepikt en gaat het rondzingen in de social media. Dat gebeurde vorige week met een stuk van Dick Thoenes op Climategate.nl. Het stuk heeft, zoals zo vaak met dit soort verhalen, de opzet van een “Gish gallop”; er is geen beginnen aan om alle onjuistheden, suggesties en drogredenen uitgebreid en onderbouwd te beantwoorden. Medeblogger Jos heeft er hier (pdf) een groot aantal kort aangestipt.

Waarom dat verhaal zo rondgaat, is voor mij onbegrijpelijk. Het ligt in elk geval niet aan de kwaliteit van de argumenten. Al moet ik wel toegeven dat mijn eerste reactie op Twitter bij nader inzien iets te kort door de bocht was.

Bij nader inzien zit een behoorlijk deel van het pseudosceptische standaardrepertoire wel op een terloopse manier in het stuk van Thoenes verweven, maar geeft hij er vaak een eigen (maar daarmee niet noodzakelijk betere) draai aan. Met de nodige goede wil zou je er de ingenieursblik van de emeritus hoogleraar procestechniek – ik heb ooit nog bij hem in de collegebanken gezeten – kunnen herkennen. Ingenieurs willen dingen ontwerpen die het doen als ze zijn gebouwd. Ze zullen daarom anders met onzekerheden omgaan dan veel andere wetenschappelijke disciplines. Als een brug 95% kans heeft om niet in te storten deugt het ontwerp ervan niet. Terwijl 95% waarschijnlijkheid in de meeste wetenschappelijke disciplines als behoorlijk overtuigend bewijs wordt gezien voor een hypothese. Ingenieurs zijn ook pragmatisch: als een empirisch vastgestelde formule – in de procestechniek wemelt het er van – goed genoeg is voor een ontwerp, vinden ze het niet nodig om verder te graven naar de precieze natuurwetenschappelijke achtergrond van zulke formules. Als je eenmaal weet hoe je een leiding moet dimensioneren zodat je geen last krijgt van turbulentie is dat genoeg. Diep graven naar de achterliggende fysica kost een hoop tijd en energie, terwijl je ontwerp er hoogstwaarschijnlijk niet beter van wordt.

Dat gezegd hebbende, is het ook wel duidelijk dat Thoenes nooit de moeite heeft genomen om zich serieus in de klimaatwetenschap te verdiepen. Daarvoor mist hij teveel kernpunten van die wetenschap en staan er teveel flagrante onjuistheden in zijn verhaal. Hij heeft ook niet erg zijn best gedaan om er een samenhangend betoog van de maken: het is eerder een verzameling losse kreten die elkaar zo nu en dan behoorlijk tegenspreken. En van onderbouwing is al helemaal geen sprake; de lezer moet Thoenes maar op zijn woord geloven want nergens in zijn stuk is een verwijzing naar al dan niet wetenschappelijke bronnen te vinden die zijn claims ondersteunen.

Zoals gezegd is het onbegonnen werk om alles inhoudelijk en onderbouwd te weerleggen. Daarom pik ik er enkele opvallende punten uit. Lees verder

De invloed van de mens op het zuurstofgehalte in de atmosfeer en de oceanen

Zuurstof is het tweede meest voorkomende element op aarde. Circa 21% van de atmosfeer bestaat uit zuurstofgas; het wordt door ons ingeademd en verbruikt bij de interne verbrandingsprocessen van planten en dieren. Als onderdeel van het molecuul water vormt zuurstof het hoofdbestanddeel van de oceanen, maar gelukkig voor de vissen is zuurstofgas ook in opgeloste vorm in water aanwezig. Zuurstof is niet altijd in onze atmosfeer aanwezig geweest. Van circa 2,4 tot 2,1 miljard jaar geleden is volgens onze kennis van het geologische verleden de concentratie in de atmosfeer sterk toegenomen, een gebeurtenis die bekend staat als de “Great Oxidation Event” of “Great Oxygenation Event”. Dit alles dankzij het leven dat de fotosynthese had ontdekt.

Bij fotosynthese wordt, gebruik makend van zonne-energie, CO2 omgezet in complexere koolstofverbindingen die ook tot voedsel dienen voor andere soorten leven. In de biologie heet dit vastleggen van koolstof in organische verbindingen (bijv. zetmeel) de koolstofassimilatie. Het ‘verbranden’ van deze verbindingen vindt zowel plaats door plantaardig als dierlijk leven. Een deel van de koolstofverbindingen die in het verre verleden zijn onttrokken aan deze cyclus van vastleggen en verbranden, vormen de fossiele grondstoffen zoals aardolie, kolen en gas. Ons verbruik van deze grondstoffen door verbranding en de daaraan gerelateerde stijging van de broeikasgasconcentraties in de atmosfeer, heeft – zoals bekend – een duidelijk merkbare invloed op onze leefwereld zoals een oplopende temperatuur, smeltende ijskappen en een stijging van het zeeniveau. Minder bekend is echter dat ons stookgedrag ook van invloed is op het zuurstofgehalte in de atmosfeer en in de oceanen.

Zij die een beetje hebben opgelet op de middelbare school weten dat bij het verbranden van koolstofverbindingen CO2 en water ontstaan. Bij dit verbrandingsproces (of oxidatie) wordt er zuurstof verbruikt. Logischerwijs zou je dus zeggen dat het verbranden van olie, gas of kolen moet leiden tot een toename van de CO2-concentratie in de atmosfeer en dat tegelijkertijd de zuurstofconcentratie evenredig zou moeten dalen. Beide zijn dan ook waargenomen, zie de grafiek in figuur 1. Interessant in deze figuur is ook de invloed van de seizoenen. Tijdens de wintermaanden neemt de CO2-concentratie toe (groene lijnen) om in de zomermaanden weer af te nemen als de planten en bomen weer groeien. Deze verandering zie je in omgekeerde vorm terug bij de zuurstofconcentratie in de atmosfeer (blauwe lijnen). Deze seizoensinvloed is groter voor het noordelijk halfrond dan voor het zuidelijk halfrond doordat het oppervlakte aan land op het noordelijk halfrond veel groter is en er daar dus ook meer bomen en planten aanwezig zijn.

Figuur 1. De verandering van de CO2– en de zuurstofconcentratie in de atmosfeer beide gemeten op twee verschillende plekken op aarde. MLO = Mauna Loa, SPO = South Pole, ALT = Alert en CGO = Cape Grim. MLO en ALT liggen op het noordelijk halfrond en SPO en CGO op het zuidelijk halfrond. Bron: figuur 6.3a uit het IPCC AR5 rapport.

Lees verder

Een koude vlek en een vertragende stroming: wat is er aan de hand in de noordelijke Atlantische Oceaan?

201501-201512

Jaargemiddelde temperatuuranomalieën voor 2015 (t.o.v. het gemiddelde van de 20e eeuw) volgens NOAA

In Reykjavik vond eerder deze maand de Arctic Circle Assembly plaats, een jaarlijkse conferentie over allerlei zaken die te maken hebben met het noordpoolgebied. Een van de onderwerpen die hier werden besproken was een opvallend verschijnsel in de Atlantische Oceaan: een plek ten zuiden van Groenland die afkoelt, terwijl de rest van de wereld warmer wordt. Terwijl 2015 wereldwijd een nieuw warmterecord vestigde, was het oceaanoppervlak hier recordkoud. De afkoeling in dit gebied is al jaren aan de gang – Rahmstorf et al. constateerden vorig jaar een dalende trend in de temperatuur over een periode van meer dan een eeuw – en die koelte duurt ook nu nog voort, zoals bijvoorbeeld te zien is bij Nullschool. (Een excuus om nog eens de aandacht op die prachtige site te vestigen is altijd welkom). Op RealClimate geeft Stefan Rahmstorf een uitgebreide toelichting op dit fenomeen. Hieronder volgt een samenvatting van de hoofdpunten.

fig1a_new-600x393

Temperatuurtrend over de periode 1901 – 2013 volgens gegevens van NASA. Bron: Rahmstorf et al. 2015

Lees verder

De risicoanalyse van James Hansen en het mijnenveld van de risicocommunicatie

Hansen fig22

Als het de bedoeling van James Hansen was om met zijn nieuwe artikel opschudding te veroorzaken, dan is dat wel gelukt. Een zoekopdracht bij Google naar recente nieuwsartikelen met de termen “Hansen” en “climate” levert honderden resultaten op. In Nederland besteedden onder meer De Volkskrant en Nieuwsuur aandacht aan het artikel.

Het artikel met de titel “Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming is highly dangerous” is geen soloactie van Hansen. Hij heeft 16 coauteurs: wetenschappers uit de VS, Frankrijk, Duitsland en China. Hansen presenteert zich wel nadrukkelijk als het boegbeeld van het onderzoek en hij laat er geen twijfel over bestaan dat hij er maatschappelijke consequenties aan verbindt. Ook in het artikel zelf doet hij dat. In de conclusies geeft hij als veilige bovengrens voor de CO2-concentratie een waarde van 350 ppm, dat is 50 ppm lager dan de huidige concentratie. Hij meent dat dit een haalbare doelstelling is voor het eind van de eeuw.

Hansen en zijn coauteurs hebben gekozen voor een benadering die voor risicoanalisten heel gebruikelijk is, maar in de doorgaans terughoudende (klimaat)wetenschappelijke wereld minder. Ze geven daarmee gehoor aan de oproep van Kerry Emanuel van vorig jaar om aandacht te geven aan zogenaamde staartrisico’s. Al gebiedt de eerlijkheid wel te zeggen dat het niet helemaal duidelijk is of Hansen het scenario dat in het artikel wordt behandeld ook als staartrisico ziet. Het artikel wekt wat meer die indruk dan zijn publieksoptredens. Juist met die publieksoptredens begeeft hij zich in een mijnenveld. Risicocommunicatie heeft sinds de jaren ’80 van de vorige eeuw de nodige aandacht gehad in Nederland (en daarbuiten) en degenen die zich ermee bezig hebben gehouden weten dat er heel veel mis kan gaan. Lees verder

Forse reductie van de CO2-uitstoot nodig voor het welzijn van onze oceanen

De oceanen bevatten een haast onvoorstelbare hoeveelheid water en heel veel leven. Lange tijd leek het alsof niets daar substantieel verandering in kon brengen, maar inmiddels weten wij beter. De mens is er wel degelijk in geslaagd om die enorme en traag reagerende massa water te veranderen. Vervuiling, overbevissing en oceaanverzuring door de opname van een gedeelte van onze CO2-uitstoot, beginnen hun tol te eisen. Vooral de oceaanverzuring gaat met een snelheid die ongekend hoog is en die waarschijnlijk niet eerder is voorgekomen in de afgelopen 300 miljoen jaar. Onze CO2-uitstoot stopt niet van vandaag op morgen en daarmee zal de accumulatie van CO2 in de atmosfeer nog een tijd doorgaan. Dat geldt dan ook voor de opwarming en oceaanverzuring; dit heeft consequenties voor het leven in de oceanen, de toekomstige CO2-opname, het zeeniveau en de temperatuur van het water in de oceanen.

In een nieuw artikel (Gattuso et al. verschenen in Science) geven 22 wetenschappers van verschillende instituten een overzicht van de huidige stand van zaken met betrekking tot de oceanen gebaseerd op de meest recente wetenschappelijke literatuur. Daarnaast vergelijken zij de effecten van CO2-uitstoot op de oceanen volgens enkele verschillende toekomstscenario’s (RCP scenario’s). In de figuur boven het blogstuk geeft men een overzicht van de risico’s voor o.a. het zeeleven, de mogelijke managementopties en de veranderingen in enkele kengetallen voor het jaar 2100 voor de scenario’s RCP2.6 en RCP8.5.
Lees verder