Tagarchief: Ed Hawkins

Overschatten de klimaatmodellen de opwarming?

Deze post is een vertaling/bewerking van een post van klimaatwetenschapper Professor Ed Hawkins, eerder verschenen op Climate Lab Book: Are the models running too hot”?

Zo af toe wordt er in de media (meer info bijv. hier of recent nog hier) weer eens verwarring gezaaid over de toekomstige klimaatverandering door te stellen dat klimaatmodellen te gevoelig zijn voor een toename van de broeikasgasconcentraties. Dat dit onjuist is, is goed in beeld gebracht door een recente studie van Medhaug et al.. Een te simplistische vergelijking van gesimuleerde mondiale temperaturen en waarnemingen zou kunnen suggereren dat de modellen teveel opwarming vertonen, maar dit zou om een ​​aantal redenen verkeerd zijn.

In onderstaande figuur uit het artikel van Medhaug e.a. wordt de modelrange (de lichtblauwe band met het modelgemiddelde als lichtblauwe lijn) vergeleken met de HadCRUT4 temperatuurobservaties en de onzekerheid daarin (de lichtoranje band met de onderste oranje lijn). Er zijn een aantal goed begrepen redenen waarom de onderste oranje lijn niet precies de lichtblauwe lijn volgt: stralingsforceringen, natuurlijke variatie, observationele afwijkingen en de keuze van de referentie periode.


Een vergelijking van de CMIP5 klimaatmodelsimulaties (RCP8.5) met de temperatuurobservaties (HadCRUT4). De referentieperiode is 1961-1990. Bron: Figuur 5 uit Medhaug et al..
Lees verder

Advertenties

Schattingen van klimaatgevoeligheid bij elkaar gebracht

Vertaling/bewerking van een blogpost van Ed Hawkins, aangevuld met informatie uit een toelichting van Kevin Cowtan, op de site van de University of York

Klimaatgevoeligheid geeft aan hoe het klimaatsysteem reageert op een verandering in zijn energiebalans, ofwel een stralingsforcering. Klimaatgevoeligheid kan via verschillende methodes bepaald worden, waarbij schattingen gebaseerd op historische instrumentele metingen van de temperatuur meestal lager uitvallen dan wat volgt uit geavanceerde modellen die het klimaat simuleren, of uit andere methodes. Voor sommigen was dit aanleiding om uiterst voorbarig te concluderen dat de modellen te gevoelig zouden zijn.

Een nieuw onderzoek – Richardson et al., verschenen in Nature Climate Change; code en data zijn beschikbaar via de University of York – verklaart de verschillen grotendeels. De uitkomsten van de twee methodes zijn niet helemaal vergelijkbaar omdat ze op een verschillende benadering van de mondiaal gemiddelde temperatuur zijn gebaseerd.

Het onderzoek heeft ook implicaties voor het begrip van de opwarming die volgt uit instrumentele metingen. De daadwerkelijke opwarming zou bijna 25% hoger zijn dan blijkt uit de HadCRUT4 dataset.

Historische meteorologische data bevatten metingen van de temperatuur van de atmosfeer boven land en boven zeeijs en metingen van de temperatuur van het zeeoppervlak. De gegevens zijn vanzelfsprekend alleen beschikbaar voor plekken op aarde waar ze daadwerkelijk gemeten zijn, door weerstations of door schepen. De verandering van de gemiddelde mondiale temperatuur (zoals HadCRUT4) wordt bepaald door deze data te combineren.

De (verandering van de) mondiaal gemiddelde temperatuur die uit modelsimulaties wordt bepaald is meestal de temperatuur van de atmosfeer op twee meter hoogte, gemiddeld over het gehele aardoppervlak (deze temperatuur noemt men in het artikel “tas”). Dit is de meest eenvoudige manier om dit te berekenen. Heeft dit verschil invloed?

Eerder onderzoek van Cowtan et al. liet zien dat dit inderdaad het geval is. De subtiele verschillen in de manier waarop de mondiale temperatuur wordt geschat kan van significante invloed zijn op de conclusies die worden verbonden aan een vergelijking van modellen en observaties.

Terugreizen in de tijd om alsnog metingen te doen op plekken van de aarde waarvoor geen instrumentele data beschikbaar zijn is onmogelijk. Om toch tot een eerlijke “apples to apples” vergelijking te komen, moet er daarom anders gekeken worden naar modelresultaten. De onderzoekers hebben dit gedaan door, bij wijze van spreken, virtuele HadCRUT4 data te berekenen uit modelresultaten. Ze hebben de volgende twee factoren in beschouwing genomen:

  • de beperkte dekking van het aardoppervlak door meetstations (bijvoorbeeld in het Noordpoolgebied); de modeldata die gebasseerd zijn op dezelfde dekkingsgraad als de metingen noemt men “masked”;
  • het gebruik van de gemodelleerde temperatuur van het zeeoppervlak in plaats van die van de atmosfeer boven de oceaan, consistent met de metingen; deze modeldata noemt men “blended”.

Figuur 1 geeft de resultaten van deze analyse.

De rode lijn in figuur 1a geeft de gangbare atmosferische temperatuur uit modelsimulaties weer, gemiddeld over het hele aardoppervlak. De blauwe lijn laat het resultaat zien van een eerlijke vergelijking van modellen en waarnemingen. Het verschil tussen waarnemingen en modellen verdwijnt dan grotendeels. Het verschil tussen atmosferische temperatuur en temperatuur van het zeeoppervlak en de onvolledige dekkingsgraad van het aardoppervlak dragen hier ruwweg in gelijke mate aan bij.

Het effect is significant. Volgens de CMIP5 simulaties zou meer dan 0,2°C opwarming niet zichtbaar zijn in de instrumentele data, door de onvolledige dekkingsgraad en het gebruik van de temperatuur van het zeeoppervlak (figuur 1b). Dit is verklaarbaar omdat het Noordpoolgebied, met een (historisch) lage dekkingsgraad, veel sneller opwarmt dan het mondiaal gemiddelde en omdat de atmosfeer sneller opwarmt dan de oceaan, door het verschil in warmtecapaciteit.

richardson_fig1

Figuur 1. Mediane temperatuur volgens CMIP5 simulaties, vergeleken met HadCRUT4 observaties.

Lees verder